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Introduction

Questions

Vast changes in technology have occurred recently and vaster changes
are coming.

• What is the role of manufacturing systems engineering?

• What is the role of manufacturing systems engineers?

• What is the role of manufacturing systems engineering research?
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Introduction

Factories and Aerospace

• Factories are like aerospace systems:

? They are complex.
? They are dynamic.
? They are random.
? They require stabilizing.
? In both, you make a plan (a trajectory, a schedule) and you use

feedback control to stay close to it.
? Modern factories and modern aerospace systems depend on

electronics, computation, and communication.

• Factories are not like aerospace systems:
? Stability is harder to achieve in aerospace.
? Simple factories are easier to design and manage than simple

airplanes.
? The stakes are higher in aerospace.

I When aerospace systems fail, people die; when factories fail, people
lose jobs or money.
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Introduction

Factories and Aerospace

Consequently,

• It was understood early that sophisticated aerodynamic theory and
control theory were needed to advance aerospace technology.
These theories were developed and applied to the design and
operation of aerospace systems.

• Common sense and relatively simple methods were sufficient for
factory design and operation, even as manufacturing technology
advanced. Sophisticated theory was not needed.
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Introduction

Factories and Aerospace

However,

• As the demand for manufactured products becomes more difficult
to meet profitably due to variability, uncertainty, and randomness,
sophisticated theory will be needed for the design and
effective operation of future factories.

• That theory is being developed, but it many important problems
have not been solved ...

• ... and some important problems have been solved, but their
solutions are not widely used.
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Manufacturing Industry Challenges

Manufacturing Industry Challenges

• Short product lifetimes. Frequent factory reconfiguration or
replacement. Limited time for real-time learning to optimize
factory.

• Large product diversity. Factories must be flexible.

• Short lead times and impatient customers.

• Inventory is perishable. It loses value rapidly due to obsolescence,
degradation, and other reasons.

• Every factory has special features that do not fit into generic
software or research models.

• Design and operation of manufacturing systems must take place in
the presence of variability, uncertainty, and randomness.
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Message

Message

• Manufacturing systems must be complex to meet these challenges,
especially

? Variability: change over time.

? Uncertainty: incomplete knowledge.

? Randomness: unpredictability that has some regularity. Probability
theory makes it possible to deal with randomness effectively in many
cases.

? To design and operate manufacturing systems that deliver the
best possible performance, we must use scientific tools for
understanding variability, uncertainty, and randomness.

• For the foreseeable future, factories cannot be designed or operated
without people.
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Message

Message

• Complex manufacturing systems are challenging to design and
operate.

? This is because the appropriate tools that have been developed by
the research community are not widely used by manufacturers,

? ... and because the scientific community has not consistently been
guided by the needs of manufacturers to develop more and better
tools.
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Message

Message

Improvements in the design and operation of manufacturing systems
require a profound understanding of the variability, uncertainty, and
randomness in manufacturing systems. These improvements must

• reduce the variability, uncertainty, and randomness, or

• reduce the sensitivity of systems to variability, uncertainty, and
randomness.

In addition, they should

• reduce the propagation of variability, uncertainty, and
randomness in systems.
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Manufacturing Systems Engineering

Manufacturing Systems Engineering
Product/Process/Factory Design

Design

products

Design

products

Design

products

Design

processes
architecture

system 

Design

Manufacturing Systems Engineering

Choose

machines

Choose

buffers

Choose

Are cost and

performance

satisfactory?

policy

operating

Yes

No
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Manufacturing Systems Engineering

Manufacturing Systems Engineering
Some Objectives of a Manufacturing System

• Satisfy demand.
• Meet due dates.
• Keep quality high.
• Keep inventory low.

• Be robust.
? Be insensitive to disruptions.
? Respond gracefully to disruptions.
? Respond gracefully to demand changes, engineering changes,

etc.
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The Team

The Team

A profound understanding of manufacturing systems can be achieved by
creating engineering research teams consisting of:

1. people with practical knowledge and experience of manufacturing
systems,

2. people with skill, experience, and knowledge of modern
mathematical modeling and analysis, and

3. people who can develop advanced IT systems.

The modelers must work closely with those with practical experience,
and they must become familiar with factory floors.
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The Team

Team Objectives

• To do projects for new or existing systems in industry partners’
factories,

• To do manufacturing systems research, and

• To document their work in order to educate manufacturing systems
engineers. This will include education in the

? theory,
? analysis, design, and operation techniques, and
? intuition

of manufacturing systems.
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The Team

Team Deliverables

• Industry-supported projects for specific manufacturing systems, such as:

? Designing new systems to meet specified objectives.
? Analyzing existing systems to improve performance.
? Designing or improving real-time material flow and scheduling

systems.

• Research that will lead to practical tools for design and operation of
manufacturing systems.

• Development of educational materials and training of new manufacturing
systems engineers.

The research and educational materials will be motivated by experience gained
in projects.
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Engineering Intuition

Engineering Intuition

• Engineering intuition includes the abilities to

? distinguish between what is quantitatively important from what is
not; and

? roughly predict the consequence of a design decision.

• The absence of intuition is expensive!

? When simulation builders lack this kind of intuition, simulation
projects can fail because:

I they include irrelevant detail which can cause errors, can cause the
simulation to run very slowly, or require parameters which cannot be
obtained accurately, or

I they leave out important mechanisms.

? Good intuition provides a good starting point for design. It can then
be refined by computational tools.

• Intuition is needed to create strategies for solving new problems.
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Engineering Intuition

Engineering Intuition

• Developing mathematical models helps generate intuition. Numerical
experiments with such models also generates intuition.

• Intuition can be learned and taught. It is based on logic and experience.
It can be explained. Its claims can be tested.

• Simulation does not replace intuition or make intuition unnecessary.
Intuition does not replace precise computational tools or make them
unnecessary.

• Intuition must initially be built with models of simple systems. Once they
are understood, studying more complex systems can help further develop
intuition.

• Manufacturing systems intuition must include intuition about
variability, uncertainty, and randomness.
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Engineering Intuition

Engineering Intuition
Two-Machine Line Behavior

M1 M2B

• Discrete time Markov chain

• Operation time = 1 time unit
• Probability of failure when Mi operating = pi , i = 1, 2
• Probability of repair when Mi down = ri , i = 1, 2
• Buffer size=N
• Performance measures:

? P = production rate
? n̄ = average inventory in the buffer

In the next slide, p1 = p2 = .01; r2 = .1. N and r1 vary.
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Engineering Intuition
Two-Machine Line Behavior
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As N →∞,

• Production rate approaches an upper limit monotonically.
• If the first machine is a bottleneck, average inventory n̄ approaches an

upper limit.
• If the second machine is a bottleneck, N − n̄ approaches an upper limit.
• If the machines are identical, n̄ = N/2.

n̄ increases as the first machine becomes faster (i.e., more productive).
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Problem: Select M1 and N so that P = .88.

Solution:

r1 N n̄
.14 13 7.0819
.12 19 10.1153
.10 32 16.0000
.08 82 32.2112
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Data Collection and Management

Data Collection and Management

Data is needed to design and operate modern factories. But data is
only valuable if

• it is accurate, X

• it is accessible, X

• it is relevant, and

• we know what to do with it.

Modern information technology provides the first two items. X

Manufacturing systems intuition and research are needed for the last
two items.
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Data Collection and Management

Kinds of Data, Part 1

What will we do with the data? There are two kinds of data:

• Scientific, which is used to develop or validate models.

• Engineering, which is used in the design or operation of systems.

In practice, the distinction may not always be clear-cut.
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Data Collection and Management

Kinds of Data, Part 2

What will we do with the data? There are two kinds of data:

• Static, which is treated as constant. Actually, it may change slowly
or infrequently.

• Dynamic. This data is always changing.

Static and dynamic data are used differently.
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Data Collection and Management

Static Data

Static data includes the parameters of the factory. Examples:

• Machines

? MTTF (Mean Time to Fail)
? MTTR (Mean Time to Repair)
? setup times

• Buffer sizes
• Parts

? Routing (sequence of machines visited) for each part type
? Operation times for each part type at each machine

These parameters are used to design

• factories and
• real-time control policies for factories
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Data Collection and Management

Uses of Static Data

Examples:

• Factory design: Given a set of machines, how large do buffers have
to be in order for the factory to meet a production rate target?

• Given a set of machines and buffers, what is the maximum number
of parts to allow in a production line?
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Data Collection and Management

Dynamic Data
Dynamic data includes the state of the factory. Examples:

• Machines

? Operational state (up, down, or being set up)
I If up, the current setup; details of the current part being processed;

the estimated time until the next maintenance
I If down, the estimated time until completion of repair
I If being set up, the time remaining until the setup is complete

• Buffers
? The number of parts in the buffer
? The mix of part types in the buffer

• Parts: For each type:

? The number of good parts produced since start of current period
? The number of good parts needed by the end of current period
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Data Collection and Management

Feedback Control Data
• Dynamic data is used for real-time feedback control.

• Each decision is made considering the system state. For example:
? When a machine completes an operation on a part, what should it

do next?
I Work on the part with the shortest remaining processing time?
I Work on the part with the earliest due date?
I Work on the part that is most profitable?
I Work on a part that does not require a setup change?
I Sit idle for a while in order to limit downstream inventory?

? When should a machine be maintained?
I When a fixed number of parts have been processed since the last

maintenance?
I When there is sufficient downstream work in process to keep the

downstream machines busy while it is being maintained?
I When the measured wear on the machine has reached a specified

threshold?
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Data Collection and Management

Data Quality and Relevance

• What data do we need?

? Collecting data before having a well-defined use for it can be
dangerous and wasteful.

I This is because there will be no clear definition of the data to be
collected, so different collectors may have different interpretations of
what is needed and how it should be collected.

I Combining data sets or comparing results based on such data sets
may lead to bad decisions.

I Even though sensors are cheap, placing them everywhere may not
be cheap.

I Models can be useful in determining the most economic placement
of sensors.
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Data Collection and Management

Data Quality and Relevance

The specification of the data to be collected should follow from the
analysis of the problem that the data will be used for. For example,

• Given a set of machines, how large do buffers have to be in order
for the factory to meet a performance target (such as production
rate)?

? Simulation or analytic models need the MTTFs and MTTRs of all
machines to predict performance as a function of the buffer sizes.

? To estimate these quantities, we need to record the times at which
each machine fails and when it is repaired.

? We also need to know when the machines are idle (when they are
prevented from working by starvation, blockage, or other reason).
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Data Collection and Management

Data Quality and Relevance

The purpose of the analysis determines the precision required of the
data.

• How many failures do we have to observe?

? For a given model of the production line, how sensitive is the
predicted performance to the MTTF and MTTR to each machine?
This may differ for different performance measures (e.g., production
rate, expected inventory, service rate).

? How sensitive are the performance measures to the model
assumptions (e.g., exponential/geometric down time vs. nearly
deterministic down times).
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Dangers of Commercial Generic Software

Dangers of Commercial Generic Software

• It is difficult to develop intuition about a complex system. Using a black
box to design a factory or its operating policy provides little intuition.

• Engineers are sometimes required to use specific commercial packaged
software as standard tools. However, generic packaged software often
does not reflect the reality of a specific factory.

? Bad assumptions, bad data, bad software lead to bad designs and
bad real-time decisions. (GIGO)

• Engineering professionalism: Engineers are responsible for their work.
They cannot blame poor performance on poor computational tools.
Therefore they must understand how their tools work, the assumptions
behind their tools, etc.

• Also, they should test the tool and decide if the results make intuitive
sense.
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Real-Time Scheduling

Feedback Control

Real-time control: real-time management of operations, material flow,
release, dispatch, and possibly other events such as maintenance, set-up
changes, etc.

Control paradigm:

Control

Actuation

Observations

System
State

Noise
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Real-Time Scheduling

Feedback Control

• Reliance on black-box software is risky if important phenomena are
not considered. For example:

? If randomness is important, then scheduling by deterministic
optimization will lead to trouble.

? If set-up changes are costly, then scheduling operations on parts will
not work well if the setup costs are not considered.
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Real-Time Scheduling

Feedback Control

Most frequent approaches:

• Formulate the scheduling problem as a large MILP (Mixed Integer
Linear Program). Solve the MILP and implement the schedule.
Then, whenever a (random) change in the system occurs, solve the
MILP again and update the schedule.

• Use simple heuristics like FIFO (first in-first out), SRPT (shortest
remaining processing time), etc.

• Decentralization, in which the only dynamic data that is used for
decision-making is local, simplifies the development of feedback
control policies.

• In reality, some (most?) factories are managed by real-time human
improvisation.
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Real-Time Scheduling

Feedback Control

Problems with these approaches:

• Large MILP: frequent recalculation of schedules can create
instability and confusion.

• Simple heuristics: may not account for important phenomena.

These problems can lead to reduced effective capacity and difficulties in
predicting delivery dates.
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Real-Time Scheduling

Feedback Control

The ideal approach:
• Formulate an optimal control problem.

? It includes a detailed model of the factory dynamics, including
material movement, random events, setup times and costs, demand
as a stochastic function of time, inspection, rework, batching,
maintenance, etc.

? The objective would be to maximize expected profit, minimize
expected cost, maximize service rate or to optimize another
performance measure.

• Solve the problem to obtain an optimal feedback policy.

• Implement.

• Advantages: This would be the best possible way to run the factory.

• Disadvantages: The optimal control problem cannot be solved.
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Real-Time Scheduling

Feedback Control
Real-Time Scheduling

• Goal: Keep cumulative production close to cumulative demand.

• Difficulty: Demand and machine reliability are both stochastic.
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Real-Time Scheduling

Feedback Control

• Optimal solution for single part type, single machine.

• Hedging point policy:
? When machine is up and surplus < Z , operate at maximum rate.
? When machine is up and surplus = Z , operate at demand rate.

d t + Z

t

demand dt

production

surplus x(t)

Production and Demand
Cumulative

hedging point Z

hedging time

earliness

machine down
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Examples of Published Research Results Not Widely Known

Examples of Published Research Results Not
Widely Known in Industry

These results have been obtained for important classes of systems.

• Production line performance analysis
? Calculates production rate and average inventory
? Method is decomposition approximation.
? Results are accurate and fast.
? Easy to use for sensitivity analysis and bottleneck detection.
? Extended to assembly systems.

• Production line buffer optimization
? Finds buffer sizes that

I maximize profit or production rate for specified total buffer space
I minimize total buffer space for a specified production rate
I and other variations

? Extension of performance analysis.
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Examples of Published Research Results Not Widely Known

Examples of Published Research Results Not
Widely Known in Industry

• Determination of production rate for production lines run by the
ConWIP (constant work-in-process) policy.

• Control policy analysis and optimization: Real-time scheduling in a
stochastic manufacturing environment

? Treats scheduling as an on-going process, not a large one-time
calculation.

? Decides what to produce next and how much.

? Decisions based on current system state.

? Decentralized: decisions based on local information.
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Examples of successful applications of research

Successful Applications

• Hewlett-Packard

? HP had to redesign an automated assembly system for early model
ink-jet printer when machine reliabilities were found to be worse
than expected.

? A simulation project for the redesign was attempted. It was not
successful

? The analytical decomposition method was then proposed by an MIT
collaborator. It was easy to use and a good redesign was found.

? HP’s implementation of this work yielded incremental revenues of
about $280 million.

? The technology was successful because it allowed the joint HP/MIT
design team to evaluate many designs very quickly.
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Examples of successful applications of research

Successful Applications

• PSA Peugeot Citroen

? “An R & D team conducted a project to support car-body
production for PSA Peugeot Citroen. PSA manufactures over 75
percent of its cars on lines designed and continually improved with
the team’s new analytic operations research tools.”

? “These OR tools, which combine simulation and Markov-chain
models of series-parallel systems, have improved throughput with
minimal capital investment and no compromise in quality —
contributing US $130 million to the bottom line in 2001 alone.”
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Examples of successful applications of research

Successful Applications

• General Motors

? Developed analytical software (“C-MORE”) for production line
performance analysis. It is based the decomposition approximation
for on production lines.

? “Within six months of using C-MORE in the Detroit-Hamtramck
assembly plant in November 1988, we found and removed
bottlenecks, increased throughput by over 12 percent, attained the
63 jobs-per-hour (JPH) production target, and cut overtime hours
per vehicle in half.”

? “Using C-MORE, they can evaluate hundreds of line designs for
each area of a plant, whereas in the past they considered fewer than
10 designs because of limited data and analysis capability.”
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Examples of successful applications of research

Successful Applications

• Scania
? Scania–Milan Polytechnic team developed methodologies and tools

to support production line design and reconfiguration. They are
based the decomposition approximation.

? Application to a semi-automatic transfer line composed of 22 NC
stations and a final quality control station.

? Error between production rate estimation and historical data: 3.65%.

? Used for analyzing the causes of starvation and blocking.

? Used for sensitivity analysis:
I How much does production rate increase with an optimal allocation

of the current buffer capacity? 7.32%.
I How much does production rate increase with a better allocation of

the current number of operators? 2.7%.
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Examples of research needed

Research Challenges: Examples of Results That
are Needed

• Real-time decision-making for setup changes.

• Maintenance scheduling based on
? current buffer levels.

? measured quality of parts

? measured wear of machine.

• Extensions of published research to more general factory models:
? Efficient computational tools to predict performance of proposed

factory designs.

? Efficient computational tools to propose factory designs that
optimize performance.
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Conclusions

Conclusions

• Manufacturing systems operate in an environment of variability,
uncertainty, and randomness.

• The design and operation of manufacturing systems must limit the
effects of variability, uncertainty, and randomness on their
performance.

• This is possible only if manufacturing systems engineers have a
fundamental understanding of the behavior of manufacturing
systems, and of how variability, uncertainty, and randomness affect
them.

• Such an understanding can be developed by teams consisting of
people with manufacturing knowledge and understanding,
researchers skilled in mathematical modeling and analysis, and IT
professionals.
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More Questions

Questions

• AI is developing rapidly. Industrie 4.0 will be generating huge
quantities of data. Will AI + Big Data lead to improved methods
for designing and operating factories?

• If so, what will be the role of manufacturing systems engineers? Is
it to plug the data into AI software and implement the results?

• If so, what will be the role of manufacturing systems engineering
researchers?

• Will human intuition still be important?
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Thank you.
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Extras

Intuition from PSA Citroen

From Patchong et al. (2003):

• People used to think that the capacity of buffers that are always full must
be increased so that there would be enough place to store more material
for the good of the production. We proved that one must focus on
half-full buffers and then, whenever possible, reduce the capacity of
buffers that are full all of the time to increase the capacity of half-full
buffers.

• People used to believe that buffer allocation did not really matter. We
showed that given equal total buffer space, several smaller buffers are
better than a few bigger buffers.

• People used to think that the action that paid back the most was
decreasing cycle time. We demonstrated that for equivalent impact, the
most profitable actions were, in order: (1) decreasing MTTR, (2)
increasing MTTF, and (3) decreasing cycle time.
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Extras

Intuition from PSA Citroen

• Some manufacturing people used to calculate the equivalent cycle time of
a set of parallel machines as equal to the mean of their cycle times. We
showed that the inverse of the equivalent cycle time of a set of parallel
machines is the mean of the inverse of their cycle time.

It was commonly believed that the resulting efficiency of a set of
machines in a series without an intermediate buffer is the product of their
efficiency. This is inaccurate, and for the kinds of systems we dealt with,
the difference with the accurate formula is over four percent. Buzacott
(1967) gives the accurate formula.
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